50 years ago, scientists thought a desert shrub might help save endangered whales

The sperm whale is an endangered species. A major reason is that the whale oil is heat-resistant and chemically and physically stable. This makes it useful for lubricating delicate machinery. The only substitute is expensive carnauba wax from the leaves of palm trees that grow only in Brazil … [but] wax from the seeds of the jojoba, an evergreen desert shrub, is nearly as good.

After sperm whale oil was banned in the early 1970s, the United States sought to replenish its reserves with eco-friendly oil from jojoba seeds (SN: 5/17/75, p. 335). Jojoba oil’s chemical structure is nearly identical to that of sperm whale oil, and the shrub is native to some North American desert ecosystems, making the plant an appealing replacement. Today, jojoba shrubs are cultivated around the world on almost every continent. Jojoba oil is used in hundreds of products, including cosmetics, pharmaceuticals, adhesives and lubricants. Meanwhile, sperm whale populations have started to recover under international anti-whaling agreements (SN: 2/27/21, p. 4).

How a virus turns caterpillars into zombies doomed to climb to their deaths

Higher and higher still, the cotton bollworm moth caterpillar climbs, its tiny body ceaselessly scaling leaf after leaf. Reaching the top of a plant, it will die, facilitating the spread of the virus that steered the insect there.

One virus behind this deadly ascent manipulates genes associated with caterpillars’ vision. As a result, the insects are more attracted to sunlight than usual, researchers report online March 8 in Molecular Ecology.

The virus involved in this caterpillar takeover is a type of baculovirus. These viruses may have been evolving with their insect hosts for 200 million to 300 million years, says Xiaoxia Liu, an entomologist at China Agricultural University in Beijing. Baculoviruses can infect more than 800 insect species, mostly the caterpillars of moths and butterflies. Once infected, the hosts exhibit “tree-top disease,” compelled to climb before dying and leaving their elevated, infected cadavers for scavengers to feast upon.
The clever trick of these viruses has been known for more than a century, Liu says. But how they turn caterpillars into zombies doomed to ascend to their own deaths wasn’t understood.

Previous research suggested that infected caterpillars exhibit greater “phototaxis,” meaning they are more attracted to light than uninfected insects. Liu and her team confirmed this effect in the laboratory using cotton bollworm moth caterpillars (Helicoverpa armigera) infected with a baculovirus called HearNPV.

The researchers compared infected and uninfected caterpillars’ positions in glass tubes surrounding a climbing mesh under an LED light. Uninfected caterpillars would wander up and down the mesh, but would return to the bottom before pupating. That behavior makes sense because in the wild, this species develops into adults underground. But infected hosts would end up dead at the top of the mesh. The higher the source of light, the higher infected hosts climbed.

The team moved to the horizontal plane to confirm that the hosts were responding to light rather than gravity, placing caterpillars in a hexagonal box with one of the side panels illuminated. By the second day after infection, host caterpillars crawled to the light about four times as often as the uninfected.

When the researchers surgically removed infected caterpillars’ eyes and put the insects in the box, the blinded insects were attracted to the light a quarter as often as unaltered infected hosts. That suggested that the virus was using a caterpillar’s vision against itself.

The team then compared how active certain genes were in various caterpillar body parts in infected and uninfected larvae. Detected mostly in the eyes, two genes for opsins, the light-sensitive proteins that are fundamental for vision, were more active after an infection with the virus, and so was another gene associated with vision called TRPL. It encodes for a channel in cell membranes involved in the conversion of light into electrical signals.

When the team used the gene-editing tool CRISPR/Cas9 to shut off the opsin genes and TRPL in infected caterpillars, the number of hosts attracted to the light in the box was cut roughly in half. Their height at death on the mesh was also reduced.

Baculoviruses appear capable of commandeering the genetic architecture of caterpillar vision, exploiting an ancient importance of light for insects, Liu says.

Light can cue crucial biological processes in insects, from directing their developmental timing, to setting their migration routes.

These viruses were already known to be master manipulators in other ways, tweaking their hosts’ sense of smell, molting patterns and the programmed death of cells, says Lorena Passarelli, a virologist at Kansas State University in Manhattan, who was not involved with the study. The new research shows that the viruses manipulate “yet another physiological host process: visual perception.”

There’s still a lot to learn about this visual hijacking, Passarelli says. It’s unknown, for instance, which of the virus’s genes are responsible for turning caterpillars into sunlight-chasing zombies in the first place.

Invasive jorō spiders get huge and flashy — if they’re female

Some thumbnail-sized, brown male spiders in Georgia could be miffed if they paid the least attention to humans and our news obsessions.

Recent stories have made much of “giant” jorō spiders invading North America from eastern Asia, some large enough to span your palm. Lemon yellow bands cross their backs. Bright red bits can add drama, and a softer cheesecake yellow highlights the many joints on long black legs.

The showy giants, however, are just the females of Trichonephila clavata. Males hardly get mentioned except for what they’re not: colorful or big. A he-spider hulk at 8 millimeters barely reaches half the length of small females. Even the species nickname ignores the guys. The word jorō, borrowed from Japanese, translates to such unmasculine terms as “courtesan,” “lady-in-waiting” and even “entangling or binding bride.”
Mismatched sexes are nothing new for spiders. The group shows the most extreme size differences between the sexes known among land animals, says evolutionary biologist Matjaž Kuntner of the Evolutionary Zoology Lab in Ljubljana, Slovenia. The most dramatic case Kuntner has heard of comes from Arachnura logio scorpion spiders in East Asia, with females 14.8 times the size of the males.

With such extreme size differences, mating conflicts in animals can get violent: females cannibalizing males and so on (SN: 11/13/99). As far as Kuntner knows, however, jorō spiders don’t engage in these “sexually conflicted” extremes. Males being merely half size or thereabouts might explain the relatively peaceful encounters.

When it comes to humans, these spiders don’t bother anybody who doesn’t bother them. But what a spectacle they make. “I’ve got dozens and dozens in my yard,” says ecologist Andy Davis at the University of Georgia in Athens. “One big web can be 3 or 4 feet in diameter.” Jorō spiders have lived in northeastern Georgia since at least 2014.
These new neighbors inspired Davis and undergraduate Benjamin Frick to see if the newcomers withstand chills better than an earlier invader, Trichonephila clavipes, their more tropical relative also known as the golden silk orb-weaver. (The jorō also can spin yellow-tinged silk.) The earlier arrival’s flashy females and drab males haven’t left the comfy Southeast they invaded at least 160 years ago.

Figuring out the jorō’s hardiness involves taking the spider’s pulse. But how do you do that with an arthropod with a hard exoskeleton? A spider’s heart isn’t a mammallike lump circulating blood through a closed system. The jorō sluices its bloodlike fluid through a long tube open at both ends. “Think of a garden hose,” says Davis. He has measured heart rates of monarch caterpillars, and he found a spot on a spider’s back where a keen-eyed observer can count throbs.

Female jorō spiders packed in ice to simulate chill stress kept their heart rates some 77 percent higher than the stay-put T. clavipes, tests showed. Checking jorō oxygen use showed females have about twice the metabolic rate. And about two minutes of freezing temperatures showed better female survival (74 percent versus 50 percent). Lab tests used only the conveniently big jorō females, though male ability to function in random cold snaps could matter too.

Plus jorō sightings in the Southeast so far suggest the newer arrival needs less time than its relative to make the next generation, an advantage for farther to the north. The adults don’t need to survive deep winter in any case. Mom and dad die off, in November in Georgia, and leave their hundreds of eggs packed in silk to weather the cold and storms.

Reports on the citizen-observer iNaturalist site suggest that in Georgia, jorō spiders already cover some 40,000 square kilometers, Davis and Frick report February 17 in Physiological Entomology. Sightings now stretch into Tennessee and the Carolinas. But how far the big moms and tiny dads will go and when, we’ll just have to wait and see.